COURSE DETAIL

THREE DIMENSIONAL MODELING

Country

Netherlands

Host Institution

Utrecht University

Program(s)

Utrecht University

UCEAP Course Level

Upper Division

UCEAP Subject Area(s)

Computer Science

UCEAP Course Number

112

UCEAP Course Suffix

UCEAP Official Title

THREE DIMENSIONAL MODELING

UCEAP Transcript Title

3D MODELING

UCEAP Quarter Units

6.00

UCEAP Semester Units

4.00

Course Description

3D Modeling pertains to all forms of creating, designing, synthesizing, acquiring, analyzing, and deforming geometric shapes in space. The applications are numerous: from computer graphics and the film industry, through computer-aided design (CAD/CAM) and architecture, to processing of point clouds and procedural modeling. The exercise is performed on the Blender open-source 3D-modeling environment. The following topics are covered: interpolating polynomials, Bezier curves, B-splines implicit surfaces, marching cubes subdivision and mesh representation structures polygonal meshes, mesh compression, hierarchy Delaunay triangulation, tetrahedralization, alpha-shapes LiDAR point clouds, RANSAC, reconstruction, CityGML normal estimation, principal component analysis progressive meshes procedural modeling, L-systems. Prerequisites for this course include a course on computer graphics, algorithms, and programming. The knowledge of linear algebra and basic calculus is very helpful for this course, but not entirely necessary; some of the basics are covered in the context.

Language(s) of Instruction

English

Host Institution Course Number

INFODDM

Host Institution Course Title

THREE DIMENSIONAL MODELING

Host Institution Campus

Science

Host Institution Faculty

Host Institution Degree

Host Institution Department

Information and Computing Sciences

Print