COURSE DETAIL
Motion planning is a fundamental building block for autonomous systems, with applications in robotics, industrial automation, and autonomous driving. After completion of the course, students will have a detailed understanding of: Formalization of geometric, kinodynamic, and optimal motion planning; Sampling-based approaches: Rapidly-exploring random trees (RRT), probabilistic roadmaps (PRM), and variants; Search-based approaches: State-lattice based A* and variants; Optimization-based approaches: Differential Flatness and Sequential convex programming (SCP); The theoretical properties relevant to these algorithms (completeness, optimality, and complexity). Students will be able to: Decide (theoretically and empirically) which algorithm(s) to use for a given problem; Implement (basic versions) of the algorithms themselves; • Use current academic and industrial tools such as the Open Motion Planning Library (OMPL).
It provides a unified perspective on motion planning and includes topics from different research and industry communities. The goal is not only to learn the foundations and theory of currently used approaches, but also to be able to pick and compare the different methods for specific motion planning needs. An important emphasis is the consideration of both geometric and kinodynamic motion planning for the major algorithm types.
COURSE DETAIL
This course covers of the fundamentals of heat and mass transport phenomena, which is useful to several engineering designs. The course studies the basic concept of heat transfer, including conduction, convection and radiation. Then it addresses the applications of the concept to industrial designs, such as heat exchanger, boiler and condenser.
COURSE DETAIL
This course develops the understanding, securely based on materials science, of various common failure modes, the reasons for their occurrence and how we seek to avoid failure by design. This course enables students to predict component failures under multiaxial loading conditions due to yielding, fracture, fatigue and creep mechanisms and to identify these failure mechanisms in practice, and to design against them.
COURSE DETAIL
This course introduces students to the principles and methodologies under the hood of typical CFD software. Major topics include numerical discretization, stability and accuracy analysis, and methods for solving incompressible viscous fluid flow and convective heat transfer problems. Students write a code/script to solve simple fluid problems. Students gain a working knowledge of the basic principles of fluid flow simulation and implementation of computational methods in solving complex problems. The course requires students to take prerequisites.
COURSE DETAIL
This course covers basic mechanical engineering knowledge and theory of mechanics of materials, and how they are used to solve practical engineering problems. Topics include introduction to statics, concept of stress and strain, analysis of stresses and deflections in a loaded beam, torsion of a circular bar as well as analysis of frames and machines. The course requires students to take prerequisites.
COURSE DETAIL
This course introduces the concept "Design for X" (DfX), which is well established within product development. In any product development project, it is essential to ensure that the product satisfies the functions it is designed for. But many other issues are caused by, or affect the properties of the product: is the product reliable, sustainable, is it easy to assemble, and inexpensive to manufacture? In this course, the following "design for Xs" are included: design for manufacturing and assembly (DFMA), design for additive manufacturing (DFAM), robust design, design for environment (DFE), and design to cost (DtC).
COURSE DETAIL
In this research course, students chose from a range of research topics in various academic fields and receive one-on-one training from an experienced mentor who helps them refine research ideas, formulate questions, define methods of data collection, execute a plan, and present findings. Students review background information for their project, summarize its key outcomes, write a clear and concise research paper or report, and present results orally.
COURSE DETAIL
This module introduces the various standards and techniques of sketching, how to prepare engineering drawings and specifications, and how to interpret drawings. Students use advanced commercial CAD software to do 3D solid modeling. Above all, this module expands the students’ creative talent and enhances their ability to communicate their ideas in a meaningful manner. Major topics include: principles of projections; isometric; orthographic and isometric sketching; 3D solid modeling; sectioning and dimensioning; drawing standards; and limits, fits, and geometrical tolerances. This module provides the student with the fundamental knowledge to do calculations on design components like bolts, screws, fasteners, weld joints, springs, gears, material selection, fatigue, bearings, and shafts.
COURSE DETAIL
The course comprises basic parts from rigid body mechanics as well as deformable body mechanics and strength of materials. In rigid body mechanics, both static and dynamic problems are treated. In statics, the equations of equilibrium are formulated from free body diagrams, and problems with concentrated as well as distributed forces are handled. The distributed forces come from applications in hydrostatics and the computation of centroids. The dynamics part of the course is based on the laws of Newton. Particle motion is described in linear and curvilinear coordinates and the equations of motion of the particle are established. Equivalent formulations based on the principles of preservation of energy and momentum are also treated. Examples of applications are taken both from daily life experiences such as climbing ladders, moving furniture, riding a bike or a rollercoaster, and technical applications from robotics and ballistics. In deformable body mechanics, the tensorial concepts of stress and strain are first defined. The relations between stress and strain, i.e. constitutive laws, for different materials are established and applications from the dimensioning of different simple construction elements (lines, rods, beams, and trusses) are treated. Important phenomena such as fatigue and fracture are also discussed.
COURSE DETAIL
The course is practically oriented, and students work in project groups with the different concepts/change management methods before seminars and with a major project work together with a company (or other organization) during the course. A significant part of the course is made up of literature seminars, where the students actively discuss and analyze research articles in the field.
Pagination
- Previous page
- Page 18
- Next page