COURSE DETAIL
Turbomachinery is an essential technology for delivering the power and propulsion needed for society, particularly in rapidly developing economies. This course integrates the fundamental principles of fluid mechanics and thermodynamics in order to analyze compressible flows and high speed turbomachinery. The course instills students with an awareness of different power and propulsion applications and the importance of high efficiency energy conversion devices to minimize environmental impact, both in a national and global context. The course provides an understanding of the unique issues associated with transonic flows and basic tools to analyze these. That understanding underpins a detailed treatment of design calculations for high speed turbomachinery, including aerodynamic performance, instability, losses, and structural limitations on performance. The course covers the most important types of turbomachines; centrifugal compressors, radial turbines, axial compressors, and axial turbines. Students also gain an appreciation of the manufacturer and user perspectives, such as costs, safety, durability, flexibility, and noise.
COURSE DETAIL
In high value added manufacturing industry, engineers are required to understand how mechanical systems and materials behave at length scales at the micron level. This course develops the student’s skills and knowledge in both precision engineering and micro engineering. The course considers the selected topics in precision, micromanufacturing, ranging from enabling technologies, and processes to applications. This is research-lead, hence the content can vary on a year-to-year basis. Currently, most of the course focuses on LASER based manufacturing, LASER-Additive Manufacturing (3D printing) with metallic materials, and related automation.
COURSE DETAIL
This course presents a practical and theoretical introduction to modern autonomous mobile robot systems. It gives students a broad introduction to the field spanning topics including hardware, software, AI and machine learning, and human-robot interaction and robot ethics. Students study the technology and methods underlying a robot’s ability to sense and act in its environment. Through a series of labs and assignments, students gain a proficiency in developing applications for robots in both simulation and real-world settings The course has the following key components: an introduction to mobile robots – sensors, actuators, and control paradigms; the fundamental theory for autonomous mobile robots (kinematics, localization, mapping, and path planning); the scientific methods for evaluating robot performance; an introduction to the field of human-robot interaction; and robots-in-the-wild: case studies of real-world robots and their ethical implications.
COURSE DETAIL
This course covers torsion of open and closed non-circular thin-walled sections; bending of unsymmetric thin-walled beams; idealized beams; multi-cell torque boxes and beams; tapered beams; introduction to mechanics of fiber-reinforced composites; classical lamination theory; failure theories for composites. This course is intended for students who are interested in the design and analysis of thin-walled structures, especially aircraft structures.
COURSE DETAIL
This course introduces the classical methods of analysis for statically indeterminate structures, especially structures comprising line elements, namely beam, truss, and frame structures. It firstly extends from earlier structural mechanics knowledge on deflection of beams to the general analysis of deflections in statically determinate structures, with an emphasis on the method of virtual work. This is followed by the analysis of indeterminate structures using the force method (flexibility method); analysis of indeterminate structures using the displacement method, including the slope-deflection method and moment distribution method. It then proceeds to the matrix stiffness method for structural analysis using the direct stiffness approach, and the general aspects of structural modelling and computer analysis. The course provides a comprehensive cover of the fundamental principles, analysis techniques and practical skills that are required in modern structural analysis applications.
COURSE DETAIL
This course introduces students to fundamental concepts of numerical analysis as a powerful tool for solving a wide variety of engineering problems. Topics include numerical solution of linear systems of algebraic equations, numerical solution of nonlinear algebraic equations and systems of equations, elementary unconstrained optimization techniques, regression and interpolation techniques, numerical differentiation and integration, as well as the numerical solution of Ordinary Differential Equations (ODE). Applications are drawn from a broad spectrum of diverse disciplines in Mechanical Engineering. The course also introduces the use of scientific computing software packages for the numerical solution of practical engineering problems. The course requires students to take prerequisites.
COURSE DETAIL
Fluid mechanics is concerned with moving and stationary fluids. This course builds on the concepts of classical mechanics and thermodynamics, and develops the mathematical and numerical framework to understand the behavior of fluids, from molecular to astronomical scales. The equations are fundamentally nonlinear, and rely heavily on vector algebra. As a result, it develops the necessary command of mathematical and numerical methods for handling nonlinear partial differential equations, as well as physical intuition about how to deal with moving and deforming parcels of fluids. Specifically, the course begins by discussing the basic properties of fluids and gases, then applies thermodynamics and conservation laws to arrive at the Navier Stokes equations. With their help, it explores the behavior of fluids under different conditions, with a special focus on concepts relevant in biology, oceanography, and complex systems theory: turbulence, vorticity dynamics, boundary layers, instability, and waves.
COURSE DETAIL
This course covers the signal representation/analysis, especially how to represent the complex signals in simple format either in time or frequency domain. Based on that, it also covers how signals behave after passing through various linear, time-invariant systems. It consists of following individual yet highly related sessions including Introduction, time-domain analysis on the linear, time-invariant systems, signal representation in frequency domain (Fourier analysis & Fourier transform), Laplace Transform, Discrete time-domain signals, Z-Transform, Discrete & Fast Fourier transform, the state space analysis of the linear systems, and etc. This course focuses on the basic theory and analytical method from time-domain to transform domain, from continuous to discrete, from the description of single-input-single-output to the state variables. It will lay down a solid foundation for the further study for courses including Digital Signal Processing, Stochastic Process, Communication Circuit, Principle of Communication. The requisite courses include calculus, linear algebra, complex variable functions, principles of electric circuits.
COURSE DETAIL
This course provides an understanding of the principles underpinning finite element analysis (FEA) and computational fluid dynamics (CFD). Lectures include basics of finite element method and current problems, challenges, insights, developments, etc., relevant to various types of applications of CFD in industry and research: Aerodynamics, F1 racing, gas turbines, internal combustion engines, weather forecasting, heat transfer, fundamental turbulence modelling, etc.
COURSE DETAIL
This course focuses on the principles and applications of welding and cutting technology, as well as the latest developments and application status of this technology at home and abroad. It aims to enable students to not only master the basic knowledge of modern welding and cutting and related technologies, but also understand the forefront of discipline development, grasp the development trend of the discipline, broaden their horizons, and activate academic thinking, so as to improve the ability of graduate students to carry out innovative research. The main contents include: introduction to different welding methods such as gas welding, arc welding, resistance welding, pressure welding, high-energy beam welding, as well as cutting methods, welding automation, welding sensors, welding forming methods, etc., focusing on their latest developments and applications.
Pagination
- Previous page
- Page 14
- Next page